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Why Study Quotients of Spheres?

Let a compact group G act isometrically on a Riemannian
manifold M .
What does M/G look like?
Is it a topological manifold?

Let x be a point in M with tangent space TxM . Consider Sx ,
the unit tangent sphere at x in TxM .

Then the subgroup Gx ⊆ G that fixes x acts on Sx , and M/G
can only be a topological manifold if the quotient Sx/Gx is at
least a homology sphere.
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What is a Matroid?

A matroid M is a pair (E , I). The edge set E is a finite set,
and I(M) ⊆ P(E (M)) denotes the independent subsets of E
that respect the following axioms:

∅ ∈ I
If A ∈ I and B ⊆ A, then B ∈ I
If A,B ∈ I(M) and |A| > |B |, then ∃e ∈ A such that
B ∪ e ∈ I

An element e ∈ M is a loop if it is no independet set.
An element e ∈ M is a coloop if it is in every basis (maximal
independent set)
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Examples of Matroids

The columns of a matrix are the edge set of a matroid; subsets
are independent iff they are linearly independent.

The edges of a graph can be taken as the edge set of a
matroid; sets of edges are independent if and only if they
contain no cycles.

1 0 0 0 0
0 1 1 0 0
0 1 0 1 0
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The Tutte Polynomial

The Tutte Polynomial T (M ; x , y) is defined recursively by:

T (a single coloop; x,y) = x

T (a single loop; x,y) = y

If e is a loop or coloop,
T (M ; x , y) = T (e; x , y)T (M − e; x , y)

If e is neither,
T (M ; x , y) = T (M − e; x , y) + T (M/e; x , y)

Many important graph and matroid invariants satisfy these
recursions, and are thus evaluations of the Tutte polynomial
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A History Lesson: Lens Spaces

Let 1̄ denote the generator of Zk

Let k ,m ∈ Z such that gcd(k,m)=1

A 3-dimensional lens space L(k ,m) is a quotient of S3 ⊆ C2

by Zk given by 1̄ · (z1, z2) = (e2πı/k · z1, e2πım/k · z2).

The action rotates the two unit circles on the planes z1 = 0
and z2 = 0. The action on the rest of the spheres is
determined by these rotations, since S3 = S1 ∗ S1

Lens spaces were introduced by Tietze in 1908. In 1919,
Alexander showed that L(5, 1) and L(5, 2) are not
homeomorphic despite having the same homology and
fundamental group.
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Quotients By Cyclic Groups

Let X be the quotient of S2n−1/Zpk where 1̄ acts by rotating
the unit circles by: 2π/pa1 , 2π/pa2 , · · · 2π/pan where
a1 ≤ a2 ≤ · · · ≤ an = k Then:
H2n−1(X ;Zpk ) = Zpk

H2n−2(X ;Zpk ) = Zpan−1

H2n−3(X ;Zpk ) = Zpan−1

H2n−4(X ;Zpk ) = Zpan−2

H2n−5(X ;Zpk ) = Zpan−2

:
H2(X ;Zpk ) = Zpa1

H1(X ;Zpk ) = Zpa1

Theorem proven by Willson in 1976; his proof was more
general and applied to Zpk homology spheres.
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Ed’s Thesis

In 1999, Swartz found a one-to-one correspondence between
isometry classes of quotient Sn/Zr

2 and binary matroids.
Furthermore, he determined the reduced Poincaré polynomial
of the quotient to be P̃(X ;Z2) ∼= t r−1T (MX ; 0, t)

More generally, Hi(S
2n−1/(Zp)r ;Zp) ∼= t r−1T (2M ; 0, t),

though the matroid correspondence is not one-to-one for odd
primes. In particular, L(5, 1) and L(5, 2) are a counterexample.

Swartz also computes the homology of the free part of the
action, i.e. the quotient of the subset of the sphere on which
the action is free as: P̃(X f ;Z) = t r−1T (2M , 1, t)
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The Correspondence of Swartz for Zr
2

Given a subgroup G ∼= Zr
2 ⊆ O(n), we can choose a set of

generators γ1, γ2, · · · γr for G . We can choose these γi to be
diagonal matrices: any basis for G can be simultaneously
diagonalized since G is abelian.

This diagonalization will not affect the geometry of the
quotient, since conjugate subgroups of O(n) yield isometric
quotients

All the γi have ±1 entries on their diagonals. We can rewrite
each diagonal as a row vector of length n, converting 1’s to 0’s
and -1’s to 1’s. Combining these rows into a r × n matrix
gives a representation of the associated matroid.
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Example: S2/Z2

Generator of Z2 Matroid T (Mx ; 0, t) Quotient1 0 0
0 1 0
0 0 −1

 [
0 0 1

]
0 Closed Hemisphere

1 0 0
0 −1 0
0 0 −1

 [
0 1 1

]
t2 Football

−1 0 0
0 −1 0
0 0 −1

 [
1 1 1

]
t2 + t RP2
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A Torus Action on an Odd-Dimensional Sphere

The Torus can be decomposed T r = T 1
1 × T 1

2 × · · ·T 1
r Since

it is acting on the sphere, we know T r ⊆ O(2n − 1); every
element of T r is an orthonormal matrix.

Recall S2n−1 = S1
1 ∗ S1

2 ∗ · · · ∗ S1
n , where * denotes the

topological join of spaces

Consider the action of a single circle T 1
i of the torus, restricted

to any one of the circles in the join S2n−1. This action,
Ti y Sj , is given by eıα · eıβ = eı(kijα+β) for some kij ∈ Z.

Let A be a matrix that describes the entire action T r y S2n−1,
with i-jth entry kij , which describes the action of Ti on Sj .
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Why Use the Matroid?

We have a matrix with r rows, corresponding to the r cicles of
T r and n columns, one for each S1 in the decomposition of
S2n−1. The ij − th entry describes the action Ti y Sj

Column switching Changing the ordering
of the components S1

j

Row switching Changing the ordering
of the Ti in T r

Adding one row to another Choosing a new basis for T r

These operations all preserve the matroid structure, as well as
the geometry of the quotient.
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Learning from the Matroid

Proposition 1: If M contains a coloop, then X = S2n−1/T r is
contractible.

Proof: If e ∈ M is a coloop, it acts independently of the other
elements.
So S2n−1/G = S2n−3/(G/ < γe >) ∗ S1/ < γe >=
S2n−3/(G/ < γe >)∗ (a point)

Proposition 2: Let X = S2n−1/T r and let MX be the
corresponding matroid. If MX contains a loop ej , then
X ∼= Sj ∗ XM−ej ;
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The Homology and its Generators

Theorem (H., Swartz): Let X ∼= S2n−1/T r be a quotient by a
linear effective action, with associated matroid MX . Then
P̃(X ;Z) = t r−1T (MX ; 0, t2)

Corollary: There is a one-to-one correspondence between
generators of homology in dimension r + 2m − 1 and bases of
M of internal activity 0 and external activity m.
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The Singular Set

Given a quotient space X = Y /G , the singular set S of the
action is the image in the quotient space of the points whose
isotropy groups are infinite.

Theorem (H., Swartz): For X ∼= S2n−1/T r a quotient of an
effective linear action, with associated matroid MX ,
P̃(S(X );Z) ∼= t r(MX )−2(T (MX ; 1, t2)− T (MX ; 0, t2))

Sketch of proof: The singular set is an arrangement of images
of subspheres S1

i1
∗ S1

i2
∗ · · · of S2n−1. Each subsphere has a

corresponding flat of the matroid that fixes it; it can be shown
that the lattice of the singular arrangement is the dual of the
lattice of flats of MX . The homology can be computed using
The Wedge Lemma of Ziegler and Živaljević
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Quotients by Finite Abelian Groups

We need a different matrix/matroid to describe the action for
each pi where 1 ≤ i ≤ k if k is the maximal power of p
appearing as an order in the finite group G .

To determine 2Mpi , first take a matrix describing the action.
Then rewrite the elements mod pi . If i 6= 1, the matrix does
not directly represent a matroid since it is not over a field;
view the columns as elements of Zn

pi , and assign a rank
function to the set A of columns as the rank of the subgroup
generated by A tensored with Zp.

We get a sequence of matroids Mpk ,Mpk−1 , · · · ,Mp, with
weak maps between them (i.e. each new matroid may have
more dependencies than the last)
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Conjecture for Hi(S
2n−1/G ;Zpk) where G is a

finite abelian group

We get a corresponding sequence of Tutte polynomials:
t r−1T (2Mpk ; 0, t), t r−1T (2Mpk−1 ; 0, t), · · · t r−1T (2Mp; 0, t)

If a copy of t i appears in an isolated instance in the chain of
Tutte polynomials, it corresponds to a Zp summand in Hi(X )

If a copy of t i appears in two (but not 3) consecutive
polynomials, it corresponds to a Zp2 summand in Hi(X )
:
:
If a summand appears in every Tutte polynomial, it
corresponds to a Zpk summand in the homology
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An Example of the Conjecture at Work

Consider the action of Z4 × Z4 on S7 given by the following
matrix with entries modulo 4:[

1 0 1 3
0 1 1 1

]
= M4 = U2,4

Then t r−1T (2M4; 0, t) = y 7 + 2y 6 + 3y 5 + 4y 4 + 5y 3 + 2y 2

If we reduce this matrix modulo 2, we get a new matroid M2,
where the last two edges are parallel.

Then t r−1T (2M2; 0, t) = y 7 + 2y 6 + 3y 5 + 3y 4 + 3y 3 + y 2

Marisa Hughes Quotients of Spheres and the Tutte Polynomial



An Example of the Conjecture at Work

The quotient of S7 by Z4 × Z4 represented by:

[
1 0 1 3
0 1 1 1

]
t r−1T (2M4; 0, t) = y 7 + 2y 6 + 3y 5 + 4y 4 + 5y 3 + 2y 2

t r−1T (2M2; 0, t) = y 7 + 2y 6 + 3y 5 + 3y 4 + 3y 3 + y 2

H1(X ;Z4) = 0
H2(X ;Z4) = Z2 ⊕ Z4

H3(X ;Z4) = (Z2)2 ⊕ (Z4)3

H4(X ;Z4) = Z2 ⊕ (Z4)3

H5(X ;Z4) = (Z4)3

H6(X ;Z4) = (Z4)2

H7(X ;Z4) = Z4
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